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One problem when using the global false nearest-neighbors �GFNN� method and Cao’s method to estimate
embedding dimension is that their effectiveness is affected by the ratio of signal power to noise power �SNR�.
Simple models are proposed to explain the curves commonly obtained when using the GFNN method and
Cao’s method. Methods are proposed for systematically estimating the embedding dimension. Prior informa-
tion is incorporated to improve the estimates.
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I. INTRODUCTION

Takens’ delay embedding theorem �1� states that a
pseudo-state space can be reconstructed from an infinite,
“noiseless” time series. However, ubiquitous measurement
noise means that delay embeddings are inevitably con-
structed from noisy data. Consider a finite time series

�y�n��n=1
Ntotal

, with Ntotal samples, where the nth measured
sample

y�n� � y̆�n� + ��n� , �1�

where y̆�n� is the noiseless sample, and ��n� is the meas-
urement noise. Each embedding vector, ��n�� �y�n� ,

y�n−�� , . . . ,y(n− �dE−1��)�, is formed from �y�n��n=1
Ntotal

; the
embedding dimension dE�Z+ and the embedding delay �2�
��Z+ need to be determined.

II. EMBEDDING DIMENSION

Sauer et al. �3� had shown that dE is related to D0, the
box-counting dimension, �2� by

dE � 2D0. �2�

Working with dimensions larger than the minimum required
leads to excessive computations �4�. As �2� only provides a
sufficient condition, it may be possible to use a smaller value
of dE. Ding et al. �5� showed that, for computing correlation
dimension �2�

dE = int�D0� + 1 �3�

suffices. From the practical point of view, dE should be cho-
sen to give the best results for one’s application �6�. How-
ever, it can be impractical to vary dE over a large range of
values. Thus, empirical methods such as the GFNN method
�4� and Cao’s method �7� are usually used.

A. Global false nearest-neighbors method

GFNN are embedding vectors �d�n� ���n� of dimension
d�Z+� which should be far apart in state space, but are
nearby because d is too low. Define

Rd
2�n,nNN� � ��d�n� − �d�nNN��2

= �
k=0

d−1

�y�n − k�� − y�nNN − k���2, �4�

where Rd
2�n ,nNN� is the squared Euclidean distance between

�d�n� and �d�nNN� �where nNN is the index of the nearest
neighbor �d�nNN��. The first criterion to determine a GFNN
is that the distance is large when d is changed to d+1

�y�n − d�� − y�nNN − d���
��d�n� − �d�nNN��

� Rtol. �5�

Inequality �5� is obtained by substituting Eq. �4� into
Rd+1

2 �n ,nNN�−Rd
2�n ,nNN�, where an arbitrary threshold Rtol

�R+ is fixed such that Rtol�10 �4� or Rtol	15 �2�. The
second criterion is

Rd+1�n,nNN�
RA

� Atol, �6�

where RA
2 is the sample variance of the time series and Atol

	2 is an arbitrary threshold. If either criterion is true, a false
nearest neighbor is declared. The dimension dE is the value
of d at which the percentage of GFNN plateaus off �4�. One
problem that Ref. �8� mentioned was that, with insufficient
data and large d, false neighbors are found even for deter-
ministic systems. There is poor discrimination between
neighboring points as d increases �9�; this problem is un-
avoidable for distance-based methods. Some issues concern-

FIG. 1. Plots of gd
� �Lorenz data� for various values of SNR

�AWGN�.
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ing GFNN method are discussed in Refs. �8,10�.

B. Cao’s method

Define

ad�n� �
��d+1�n� − �d+1�nNN��

��d�n� − �d�nNN��
, �7�

where n� �1,N−d��. The mean of ad�n� is defined as


ad� �
1

N − d�
�
n=1

N−d�

ad�n� .

Define

Ed
1 � 
ad+1�


ad�
; �8�

Ed
1 stops changing when d�dE. Unlike the GFNN method,

the embedding dimension for Cao’s method is decided not by
the presence of a plateau, but by the dimension whereby the
curve of Ed

1 vs d saturates �location of knee�.

III. PROPOSED METHODS FOR ESTIMATING dE IN THE
PRESENCE OF NOISE

Time series of Lorenz and Rössler systems are generated
using the MATLAB© ODE solver ode45. Unless otherwise
specified, Lorenz data refer to the x component of the Lorenz
system �Ntotal=30 000, step size 0.01�; Rössler data refers to
the x component of the Rössler system �Ntotal=30 000, step

size 0.1�. Considering Eqs. �2� and �3�, the likely range
of values of dE should be 3�dE�5 for both systems. Addi-
tive white Gaussian noise �AWGN� and Additive white
uniform noise �AWUN� are added to the time series to
form signals with different SNR. The implementation of
the GFNN method in the TISEAN toolbox �8,11�
�false�nearest.exe� is used to compute gd

�, the propor-

tion of GFNN from ���n��n=Nbegin
Ntotal

�where Nbegin� �dE−1��
+1�, and the implementation of Cao’s method �cao.dll� in
the TSTOOL toolbox �12� is used to compute Ed

1.
One problem with the GFNN method is that the location

of the plateau becomes difficult to discern when SNR is low.
For example, in Fig. 1 it is unclear if dE=8 when SNR is
10 dB, as dE=4 may be more appropriate. Also, there will be
false neighbors even for high values of d, as noise can be
regarded as a high-dimensional signal �13�

Figure 2 is the plot of Ed
1 vs d for Lorenz data for various

values of SNR. One problem with Cao’s method is that the
location of the knee becomes difficult to discern when
AWGN is added; it is only possible to estimate dE�8 when
SNR is 10 dB.

A. Method 1 (based on GFNN method)

Let

��n� � �̆�n� + ��n� , �9�

where the noiseless embedding vector �̆�n�� �y̆�n� ,
y̆�n−�� , . . . , y̆(n− �dE−1��)� and the noise vector
��n�� ���n� ,��n−�� , . . . ,�(n− �dE−1��)�. Assume

TABLE I. Embedding dimensions �Lorenz data� using proposed methods.

SNR �dB�

AWGN AWUN

� Method 1 Method 2 Method 3 Method 4 � Method 1 Method 2 Method 3 Method 4

−10 1 3 3 3 3 2 6 4 2
0 1 7 4 2 1 4 4 2 4
10 15 4 3 2 14 4 3 2
20 12 3 4 2 12 3 4 2
30 11 2 3 2 2 11 3 3 2 3
� 11 2 3 2 2 11 2 3 2 2

FIG. 2. Plots of Ed
1 �Lorenz data� for various values of SNR

�AWGN�.
FIG. 3. Absolute residuals from fitting values in Fig. 2 to model

given by Eq. �15�.
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gd
� = gd

�̆ + gd
�, �10�

where gd
�̆ is the proportion of GFNN from ��̆�n��n=Nbegin

Ntotal
, and

gd
� is the proportion of GFNN from ���n��n=Nbegin

Ntotal
. Note that

Eq. �10� ignores two possibilities:
�i� both �̆�n� and ��n� may contribute to the same nearest

neighbor �gd
� is overestimated�; and

�ii� neither �̆�n� nor ��n� may contribute to a false neigh-
bor, but the combination ��n� may contribute one �gd

� is
underestimated�.

The function gd
�̆ vs d should decrease monotonically, as

the proportion of GFNN should decrease as d increases. If
Ntotal��, the proportion of GFNN will drop to 0, as the
average value of Rd

2�n ,n�� will increase with d. The function
gd

� vs d could be approximated by a constant, as the propor-
tion of GFNN is independent of d. Thus, gd

�̆+gd
� results in a

plateau. Since gd
� cannot exceed 1, Eq. �10� can be changed

to

gd
� = max��gd

�̆ + gd
��,1� . �11�

A systematic way to locate the plateau is to find the maxi-
mum of the second-order central difference.

B. Method 2 (based on Cao’s method)

Observe that the Ed
1 plots in Fig. 2 converge to 1. Using

the triangle inequality on �7�

��d�n� − �d�nNN��
��d�n� − �d�nNN��

�
��d+1�n� − �d+1�nNN��

��d�n� − �d�nNN��
� 1

+
�y�n − d�� − y�nNN − d���

��d�n� − �d�nNN��
. �12�

Using the squeeze theorem

lim
d→�

ad�n� = 1. �13�

Thus, Ed
1	1 for large d, suggesting that Ed

1 will converge to
1. A systematic way to identify the location of the knee for
Cao’s method is to find the minimum of the second-order
central difference.

C. Method 3 (based on Cao’s method)

For the case where the data are pure noise, Ed
1 should not

change much as d is varied. This can be expressed by

Ed
1 +

�Ed
1

�d
	d 	 b , �14�

where b�R+ is a constant, and the change in dimension is
	d=1, as d�Z+. From �14�

�Ed
1

b − Ed
1 	 �d

Ed
1 = b − e−d−c, �15�

where c�R is a constant. The values of b and c are esti-
mated using nonlinear least-squares �Gauss-Newton method�
with the initial values b=1 �from Eq. �13�� and c=0, to ob-
tain a close fit to Ed

1 plots under low SNR. Note that b�1 as
dy�. The value of dE corresponds to the value of d at
which the Ed

1 plots deviate most from the model of Eq. �15�;
see Fig. 3 �the residual is the difference between Ed

1 and
b−e−d−c vs d�.

D. Method 4

As method 1 seems to underestimate dE, while method 2
seems to overestimate dE �Tables I and II�, good estimates of

TABLE III. Embedding dimensions �Lorenz data� using proposed methods and prior information.

SNR �dB�

AWGN AWUN

� Method 1 Method 2 Method 3 Method 4 � Method 1 Method 2 Method 3 Method 4

−10 1 3 3 3 3 2 6 4 3
0 1 7 4 3 1 4 4 3 4
10 15 4 3 3 3 14 4 3 3 3
20 12 3 4 3 3 12 3 4 3 3
30 11 3 3 3 3 11 3 3 3 3
� 11 3 3 3 3 11 3 3 3 3

TABLE II. Embedding dimensions �Rössler data� using proposed methods.

SNR �dB�

AWGN AWUN

� Method 1 Method 2 Method 3 Method 4 � Method 1 Method 2 Method 3 Method 4

−10 1 4 3 3 3 2 3 3 2 3
0 15 4 4 3 4 14 3 4 3 3
10 14 4 4 2 4 14 4 5 2
20 14 3 4 2 14 3 4 2
30 13 2 4 2 2 13 2 3 2 2
� 12 2 3 2 2 12 2 3 2 2
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dE should occur when methods 1 and 2 agree �similar idea to
sandwich theorem�. However, such a criterion would be too
strict, and it may be practical to check for agreement with
method 3 as well. Thus, a voting scheme is suggested: dE is
the value selected most frequently by methods 1–3. No an-
swer is given in the event of a tie.

E. Prior knowledge

For Lorenz data, D0	2.06 �14�, which is close to 2; thus,
relatively few GFNN are generated when d=2. Thus, method
1 will estimate dE=2, although it is theoretically infeasible
�15�, as gd

� will experience a gentle slope between d=2 and
d=3. Thus, the maximum second-order central difference
which results in dE�2 should be selected. Prior knowledge
can be incorporated for methods 1–3: the values of dE ob-
tained are constrained such that dE�2 �Tables III and IV�.
However, prior knowledge may be of limited use for high-
dimensional systems �hyperchaos�.

IV. RESULTS AND DISCUSSIONS

Tables I and II show that the value of dE selected by
method 1 tends to increase as SNR decreases �for both
AWGN and AWUN�. Method 2 tends to favor higher values
of dE, compared to method 3. Method 3 �Tables III and IV�
seems to be most reliable, but this observation may be a little
naive, as dE�3 even for negative SNR. Thus, method 3

should be double-checked by methods 1 and 2, as they are
more sensitive to changes in SNR. This suggests method 4,
which selects 2�dE�4 for SNR�0 dB �Tables I and II�.
However, in many cases, method 4 fails to obtain an answer
because there is no majority. When prior information is in-
corporated, method 4 works much better, and usually selects
dE=3 �except dE=4 for SNR of 0 dB or 10 dB�.

A few words of caution are in order. Since finding deriva-
tives is not a robust procedure, there is no guarantee that
methods 1 and 2 work. Note that gd

� varies with Ntotal�4�;
similarly, Ed

1 varies with Ntotal �7�. Furthermore, the plots of
gd

� vs d vary with SNR, and there is no simple model for the
gd

� plots, unlike Eq. �15� for Cao’s method.
For SNR�0 dB, the values of � tend to become very low

�Table I–IV�. Thus, inappropriate embeddings may be con-
structed, even though the “correct” value of dE is estimated.
In any case, results at low SNR should be taken with a grain
of salt.

V. CONCLUSION

A simple model �Eq. �15�� is proposed to explain the
curves commonly obtained when using Cao’s method to es-
timate dE. Simple rules are suggested to extract embedding
dimension �methods 1 and 2�. A voting scheme �method 4� is
suggested, which gives dE=3 even with low SNR, for both
Lorenz and Rössler systems �systems with 3 degrees of free-
dom�. Prior information that the systems are dissipative is
incorporated to improve the estimates of dE.
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