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Postprocessing methods for finding the embedding dimension of chaotic time series
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One problem when using the global false nearest-neighbors (GFNN) method and Cao’s method to estimate
embedding dimension is that their effectiveness is affected by the ratio of signal power to noise power (SNR).
Simple models are proposed to explain the curves commonly obtained when using the GFNN method and
Cao’s method. Methods are proposed for systematically estimating the embedding dimension. Prior informa-

tion is incorporated to improve the estimates.
DOI: 10.1103/PhysRevE.72.027204
I. INTRODUCTION

Takens’ delay embedding theorem [1] states that a
pseudo-state space can be reconstructed from an infinite,
“noiseless” time series. However, ubiquitous measurement
noise means that delay embeddings are inevitably con-
structed from noisy data. Consider a finite time series

otal
{y(n)}nN;{ , with N4 samples, where the nth measured
sample

y(n) £ ¥(n) + 7(n), (1)

where y(n) is the noiseless sample, and 7(n) is the meas-
urement noise. Each embedding vector, wv(n)=(y(n),

y(n=1),...,y(n—=(dg—1)7), is formed from {y(n)}ﬁl\':)lml; the

embedding dimension di € Z* and the embedding delay [2]
T7e 7" need to be determined.

II. EMBEDDING DIMENSION

Sauer ef al. [3] had shown that d is related to Dy, the
box-counting dimension, [2] by

dy>2D,. )

Working with dimensions larger than the minimum required
leads to excessive computations [4]. As (2) only provides a
sufficient condition, it may be possible to use a smaller value
of dg. Ding et al. [5] showed that, for computing correlation
dimension [2]

dy=int(Dy) + 1 3)

suffices. From the practical point of view, dr should be cho-
sen to give the best results for one’s application [6]. How-
ever, it can be impractical to vary di over a large range of
values. Thus, empirical methods such as the GFNN method
[4] and Cao’s method [7] are usually used.

A. Global false nearest-neighbors method

GFNN are embedding vectors v (n) [v(n) of dimension
d € 7*] which should be far apart in state space, but are
nearby because d is too low. Define
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Ri(n.nyn) £ [[vyn) = vy
d-1
=2 (y(n—k7) = y(nyy—k7)?, (4)
k=0
where Ri(n,nNN) is the squared Euclidean distance between
v,(n) and v,(nyy) (Where nyy is the index of the nearest
neighbor v,(nyy)). The first criterion to determine a GFNN
is that the distance is large when d is changed to d+1

||)’(" —d7) — y(nyy— dT)H

” v,(n) - vd(nNN)“

> Rtol' (5)

Inequality (5) is obtained by substituting Eq. (4) into
R3,,(n,nyy)—R3(n,nyy), where an arbitrary threshold R,
e R* is fixed such that R,;=10 [4] or R,,;~15 [2]. The
second criterion is

Ry (n,nyy)

>A,, 6
RA tol ( )

where Ri is the sample variance of the time series and A,
~72 is an arbitrary threshold. If either criterion is true, a false
nearest neighbor is declared. The dimension d is the value
of d at which the percentage of GFNN plateaus off [4]. One
problem that Ref. [8] mentioned was that, with insufficient
data and large d, false neighbors are found even for deter-
ministic systems. There is poor discrimination between
neighboring points as d increases [9]; this problem is un-
avoidable for distance-based methods. Some issues concern-
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FIG. 1. Plots of g; (Lorenz data) for various values of SNR
(AWGN).
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FIG. 2. Plots of Etll (Lorenz data) for various values of SNR
(AWGN).
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ing GFNN method are discussed in Refs. [8,10].

B. Cao’s method
Define

A ||vd+1(n) - vd+l(nNN)||
adn) = ||vd(n) - vd(nNN)H ’ N

where n € [1,N-d7]. The mean of a,(n) is defined as

N—-dt
1

ag) & > ayn).

—-dr n=1
Define

1 A <ad+1>_
B ®

E}, stops changing when d=d. Unlike the GFNN method,
the embedding dimension for Cao’s method is decided not by
the presence of a plateau, but by the dimension whereby the
curve of Ei! vs d saturates (location of knee).

III. PROPOSED METHODS FOR ESTIMATING dy IN THE
PRESENCE OF NOISE

Time series of Lorenz and Rossler systems are generated
using the MATLABO ODE solver ode45. Unless otherwise
specified, Lorenz data refer to the x component of the Lorenz
system (N“'=30 000, step size 0.01); Rossler data refers to
the x component of the Rossler system (N*/=30 000, step
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FIG. 3. Absolute residuals from fitting values in Fig. 2 to model
given by Eq. (15).

size 0.1). Considering Egs. (2) and (3), the likely range
of values of d should be 3=<dy=35 for both systems. Addi-
tive white Gaussian noise (AWGN) and Additive white
uniform noise (AWUN) are added to the time series to
form signals with different SNR. The implementation of
the GFNN method in the TISEAN toolbox [8,11]
(false nearest.exe) is used to compute g7, the propor-
tion of GFNN from {v(n)}fg:egm [where N?¢"2 (d.—1)7
+1], and the implementation of Cao’s method (cao.d11) in
the TSTOOL toolbox [12] is used to compute E},

One problem with the GFNN method is that the location
of the plateau becomes difficult to discern when SNR is low.
For example, in Fig. 1 it is unclear if dz=8 when SNR is
10 dB, as d;=4 may be more appropriate. Also, there will be
false neighbors even for high values of d, as noise can be
regarded as a high-dimensional signal [13]

Figure 2 is the plot of E} vs d for Lorenz data for various
values of SNR. One problem with Cao’s method is that the
location of the knee becomes difficult to discern when
AWGN is added; it is only possible to estimate d;=8 when
SNR is 10 dB.

A. Method 1 (based on GFNN method)

Let
v(n) £ ¥(n) + n(n), ©)
where the noiseless embedding vector ¥(n)2(¥(n),
y(n-1),...,y(n—(dg—1)7)) and the noise vector

p(n)2(y(n), nin-1), ..., 9p(n—(dg—1)7). Assume

TABLE 1. Embedding dimensions (Lorenz data) using proposed methods.

AWGN AWUN
SNR (dB) T Method 1 Method 2 Method 3 Method 4 T Method 1 Method 2 Method 3 Method 4

-10 1 3 3 3 2 6 4 2

0 1 7 4 2 1 4 4 2 4

10 15 4 3 2 14 4 3 2

20 12 3 4 2 12 3 4 2

30 11 2 3 2 11 3 3 2 3

el 11 2 3 2 11 2 3 2 2
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TABLE II. Embedding dimensions (Rgssler data) using proposed methods.

AWGN AWUN

SNR (dB) T Method 1 Method 2 Method 3 Method 4 T Method 1 Method 2 Method 3 Method 4

-10 1 4 3 3 3 2 3 3 2 3
0 15 4 4 3 4 14 3 4 3 3
10 14 4 4 2 4 14 4 5 2
20 14 3 4 2 14 3 4 2
30 13 2 4 2 2 13 2 3 2 2
o0 12 2 3 2 2 12 2 3 2 2
g:i"z g:i}+ g;l, (10) lim ad(n) =1. (13)

d—o
total

. . < N

where g; is the proportion of GFNN from {It’(tri)}n=Nb"g’-’“ and Ty, E'~1 for large d, suggesting that E} will converge to

g2 is the proportion of GFNN from {ﬂ(n)}gszegm- Note that 1. A systematic way to identify the location of the knee for

Eq. (10) ignores two possibilities: Cao’s method is to find the minimum of the second-order
(i) both ¥(n) and 7(n) may contribute to the same nearest ~ central difference.

neighbor (g7 is overestimated); and

(ii) neither ¥(n) nor 5(n) may contribute to a false neigh- C. Method 3 (based on Cao’s method)
bor, but the combination v(n) may contribute one (g is For the case where the data are pure noise, E}, should not
underestimated). change much as d is varied. This can be expressed by

1

The function g vs d should decrease monotonically, as E}; + %Edd Ad~b. (14)

the proportion of GFNN should decrease as d increases. If
N9l <o the proportion of GFNN will drop to 0, as the .. o o
average value of Rfi(n,n,]) will increase with d. The function ~ Where b € R is a constant, and the change in dimension is

g7 vs d could be approximated by a constant, as the propor- Ad=1, as d e Z*. From (14)

tion of GFNN is independent of d. Thus, 83"' gJ results in a 5E31
plateau. Since g7 cannot exceed 1, Eq. (10) can be changed P ~ od
to T
v_ v
gd_max((gd"'g(’]])vl)' (11) E(]1=b—€_d_c, (15)

A systematic way to locate the plateau is to find the maxi-

mum of the second-order central difference. where ¢ € R is a constant. The values of b and ¢ are esti-

mated using nonlinear least-squares (Gauss-Newton method)
B. Method 2 (based on Cao’s method) with the initial values b=1 [from Eq. (13)] and ¢=0, to ob-
tain a close fit to E}, plots under low SNR. Note that b # 1 as
d-+. The value of dp corresponds to the value of d at
which the E}, plots deviate most from the model of Eq. (15);
see Fig. 3 (the residual is the difference between ELI, and
b—e" vs d).

Observe that the E}I plots in Fig. 2 converge to 1. Using
the triangle inequality on (7)
[va(n) = vy(nyy)| < Va1 (7) = vy ()| <1
[v4(n) = vy(nyy)|| [va(n) = vy(nyy)|
ly(n = d7) = y(nyy = d7)|
[w4(n) = vy(npy)l|

. (12) D. Method 4

As method 1 seems to underestimate dz, while method 2
Using the squeeze theorem seems to overestimate dj (Tables I and II), good estimates of

TABLE III. Embedding dimensions (Lorenz data) using proposed methods and prior information.

AWGN AWUN

SNR (dB) T Method 1 Method 2 Method 3 Method 4 T Method 1 Method 2 Method 3 Method 4

-10 1 3 3 3 3 2 6 4 3

0 1 7 4 3 1 4 4 3 4
10 15 4 3 3 3 14 4 3 3 3
20 12 3 4 3 3 12 3 4 3 3
30 11 3 3 3 3 11 3 3 3 3
0 11 3 3 3 3 11 3 3 3 3
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TABLE IV. Embedding dimensions (Rossler data) using proposed methods and prior information.

AWGN AWUN
SNR (dB) T Method 1 Method 2 Method 3 Method 4 T Method 1 Method 2 Method 3 Method 4

-10 1 4 3 3 3 2 3 3 3 3

0 15 4 4 3 4 14 3 4 3 3

10 14 4 4 3 4 14 4 5 3

20 14 3 4 3 3 14 3 4 3 3

30 13 3 4 3 3 13 3 3 3 3

0 12 3 3 3 3 12 3 3 3 3

dg, should occur when methods 1 and 2 agree (similar idea to
sandwich theorem). However, such a criterion would be too
strict, and it may be practical to check for agreement with
method 3 as well. Thus, a voting scheme is suggested: d is
the value selected most frequently by methods 1-3. No an-
swer is given in the event of a tie.

E. Prior knowledge

For Lorenz data, Dy~ 2.06 [14], which is close to 2; thus,
relatively few GFNN are generated when d=2. Thus, method
1 will estimate dr=2, although it is theoretically infeasible
[15], as g will experience a gentle slope between d=2 and
d=3. Thus, the maximum second-order central difference
which results in dp>2 should be selected. Prior knowledge
can be incorporated for methods 1-3: the values of dg ob-
tained are constrained such that dz>?2 (Tables III and IV).
However, prior knowledge may be of limited use for high-
dimensional systems (hyperchaos).

IV. RESULTS AND DISCUSSIONS

Tables I and II show that the value of dj selected by
method 1 tends to increase as SNR decreases (for both
AWGN and AWUN). Method 2 tends to favor higher values
of d, compared to method 3. Method 3 (Tables III and TV)
seems to be most reliable, but this observation may be a little
naive, as dp<3 even for negative SNR. Thus, method 3

should be double-checked by methods 1 and 2, as they are
more sensitive to changes in SNR. This suggests method 4,
which selects 2<dy<4 for SNR=0 dB (Tables I and II).
However, in many cases, method 4 fails to obtain an answer
because there is no majority. When prior information is in-
corporated, method 4 works much better, and usually selects
dg=3 (except dg=4 for SNR of 0 dB or 10 dB).

A few words of caution are in order. Since finding deriva-
tives is not a robust procedure, there is no guarantee that
methods 1 and 2 work. Note that g¥ varies with N“'“[4];
similarly, E} varies with N [7]. Furthermore, the plots of
gy vs d vary with SNR, and there is no simple model for the
g4 plots, unlike Eq. (15) for Cao’s method.

For SNR =0 dB, the values of 7tend to become very low
(Table I-IV). Thus, inappropriate embeddings may be con-
structed, even though the “correct” value of d is estimated.
In any case, results at low SNR should be taken with a grain
of salt.

V. CONCLUSION

A simple model [Eq. (15)] is proposed to explain the
curves commonly obtained when using Cao’s method to es-
timate dp. Simple rules are suggested to extract embedding
dimension (methods 1 and 2). A voting scheme (method 4) is
suggested, which gives dry=3 even with low SNR, for both
Lorenz and Réssler systems (systems with 3 degrees of free-
dom). Prior information that the systems are dissipative is
incorporated to improve the estimates of dj.
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